Enhanced Broadband Electromagnetic Absorption in Silicon Film with Photonic Crystal Surface and Random Gold Grooves Reflector

نویسندگان

  • Zhi-Hui Chen
  • Na Qiao
  • Yibiao Yang
  • Han Ye
  • Shaoding Liu
  • Wenjie Wang
  • Yuncai Wang
چکیده

We show a hybrid structure consisting of Si film with photonic crystal surface and random triangular gold grooves reflector at the bottom, which is capable of realizing efficient, broad-band, wide-angle optical absorption. It is numerically demonstrated that the enhanced absorption in a broad wavelength range (0.3-9.9 μm) due to the scattering effect of both sides of the structure and the created resonance modes. Larger thickness and period are favored to enhance the absorption in broader wavelength range. Substantial electric field concentrates in the grooves of surface photonic crystal and in the Si film. Our structure is versatile for solar cells, broadband photodetection and stealth coating.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photonic Structures for Light Trapping in Thin Film Silicon Solar Cells: Design and Experiment

One of the foremost challenges in designing thin-film silicon solar cells (TFSC) is devising efficient light-trapping schemes due to the short optical path length imposed by the thin absorber thickness. The strategy relies on a combination of a high-performance back reflector and an optimized texture surface, which are commonly used to reflect and scatter light effectively within the absorption...

متن کامل

Experimental Demonstration of Quasi-resonant Absorption in Silicon Thin Films for Enhanced Solar Light Trapping

We experimentally demonstrate that the addition of partial lattice disorder to a thin-film microcrystalline silicon photonic crystal results in the controlled spectral broadening of its absorption peaks to form quasi resonances: increasing light trapping over a wide bandwidth while also reducing sensitivity to the angle of incident radiation. Accurate finitedifference time-domain simulations ar...

متن کامل

Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals.

Most photovoltaic (solar) cells are made from crystalline silicon (c-Si), which has an indirect band gap. This gives rise to weak absorption of one-third of usable solar photons. Therefore, improved light trapping schemes are needed, particularly for c-Si thin film solar cells. Here, a photonic crystal-based light-trapping approach is analyzed and compared to previous approaches. For a solar ce...

متن کامل

Investigation of Porous Alumina as a Self - Assembled Diffractive Element to Facilitate Light Trapping in Thin Film Silicon Solar Cells

Thin film solar cells are currently being investigated as an affordable alternative energy source because of the reduced material cost. However, these devices suffer from low efficiencies, compared to silicon wafer solar cells, due to the poor absorption of longer wavelengths of light in the very thin active layer. One method of improving the efficiency of thin film solar cells is to use light ...

متن کامل

Deterministic composite nanophotonic lattices in large area for broadband applications

Exotic manipulation of the flow of photons in nanoengineered materials with an aperiodic distribution of nanostructures plays a key role in efficiency-enhanced broadband photonic and plasmonic technologies for spectrally tailorable integrated biosensing, nanostructured thin film solarcells, white light emitting diodes, novel plasmonic ensembles etc. Through a generic deterministic nanotechnolog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015